Self-assembly, which enables spontaneous arrangement of objects, is of particular importance for nanomaterials in both fundamental and applied research fields. Multiple types of nanoparticle superstructures have been successfully built in highly controllable and efficient manners through balancing the nanoscale interactions. Uniform and proper arrangement of nanoparticles inside the assembled superstructures is essential to exhibit their constant, reliable, and homogeneous functionalities. To be specific, the long-range ordered superlattices not only succeed with their building blocks' intrinsic property, but also, more importantly, can display collective properties that are absent both in individual nanoparticles and in their bulk states. One of the most attractive aspects of nanomaterials is their exceptional optical properties that have tremendous application potential in multidisciplinary fields. In this regard, constructing the superstructures from optical nano units like noble metal nanostructures, semiconductor nanoparticles, or hybrid nanomaterials is critical for attaining the unique optical properties and exploring their practical applications in multiple fields including photonics, optoelectronics, optical sensing, photocatalysis, etc. In this Account, we provide guidelines for self-assembly strategies to fabricate the superstructures and discuss the optical properties that the superstructures display. In the first part, we categorize and discuss the key factors that strongly affect the self-assembly process and determine the configurational and integral quality of the superstructures. On one hand, the diversity and designability of nanoparticles offer the intrinsic complexity of the building blocks, including geometry, size, composition, and surface ligand, which efficiently tailors the assembly process and superstructure configuration. On the other hand, multiple factors originating from the introduction of extrinsic features are recognized to facilitate the metastable or dynamic self-assembly process. Such extrinsic features include both matter like DNA origami, peptides, small molecules, etc. and nonmatter involved with electric fields, magnetic fields, light, temperature, etc. In the second part, we introduce the state-of the art progress on the collective optical performances of the assembled superstructures, including (1) chiral optics, such as circular dichroism and circularly polarized luminescence, (2) plasmonic properties and related applications, and (3) luminescence related optics and their applications. Finally, we summarize the existing problems and main challenges briefly, and some future directions of this field are proposed. We envision that, with deep understanding of the assembly mechanism and development of the synthetic and surface chemistry, rational modulation of nanoassemblies will be the trend of this field, which is beneficial to achieve the emerging collective performances and create new generation devices with advanced functions.
Read full abstract