Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Read full abstract