In the present study, Cobalt oxide (Co3O4)/Copper oxide (CuO) nanoflower catalysts were synthesized through a one-step solvothermal method, and the impact of various factors, including reaction time, on the catalytic activity of the catalysts towards carbon monoxide (CO) was investigated. The results showed that the catalysts synthesized at 140 °C and a reaction time of 4 h provided the best catalytic performance for carbon monoxide, and the regular nanoflower-like morphology provided a larger specific surface area as well as a greater number of active sites, allowing the instantaneous 100 % elimination of CO at 200 °C. Additionally, a plausible reaction mechanism was elucidated, wherein CO initially adsorbed onto the sample's surface, subsequently reacting with lattice oxygen to form intermediate carbonate species. This process ultimately led to the production of carbon dioxide (CO2), followed by the desorption of CO2 molecules from the sample's surface. The results demonstrate that these composite catalysts effectively mitigate CO levels during CO over limit in coal mines, thereby enhancing the safety of production personnel.
Read full abstract