Abstract
The development of a simple and sensitive electrochemical sensing platform for levofloxacin (LVF) analysis is of great significance to human health. In this work, a covalent organic framework (TP-COF) was in situ grown on the surface of Sn-MoC nanospheres with nanoflower-like morphology through a one-pot method to obtain the TP-COF@Sn-MoC composite. The prepared composite was used to modify a glassy carbon electrode (GCE) to realize the sensitive detection of levofloxacin. TP-COF was formed by polycondensation of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and pyromellitic dianhydride (PMDA), in which C = O and C = N groups served as double active centers forthe recognition and electrocatalytic oxidation of the target molecule. Meanwhile, the introduction of Sn-MoC improved the conductivity of the electrode. The TP-COF@Sn-MoC composite produced a strong synergistic effect and showed a high electrocatalytic ability toward levofloxacin oxidation. The linear range of LVF was 0.6-1000μM and the limit of detection (LOD) was 0.029μM (S/N = 3). In addition, the sensor has been successfully applied for the analysis of LVF in human urine and blood serum samples with acceptable recovery rates, demonstrating that the sensor was promising in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.