• All Solutions All Solutions
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Features
  • Top Papers
  • Library
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • translate papers link Chrome Extension
Explore

Content Type

  • Preprints
  • Conference Papers
  • Journal Articles

More

  • Research Areas
  • Topics
  • Resources

Nanofibril Films Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
148 Articles

Published in last 50 years

Related Topics

  • Cellulose Nanofibril Films
  • Cellulose Nanofibril Films
  • TEMPO-oxidized Cellulose Nanofibrils
  • TEMPO-oxidized Cellulose Nanofibrils
  • Cellulose Nanofiber Film
  • Cellulose Nanofiber Film
  • Cellulose Nanofibrils
  • Cellulose Nanofibrils
  • Cellulose Nanofibers
  • Cellulose Nanofibers
  • Nanocellulose Films
  • Nanocellulose Films
  • Cellulose Films
  • Cellulose Films
  • Microfibrillated Cellulose
  • Microfibrillated Cellulose

Articles published on Nanofibril Films

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
147 Search results
Sort by
Recency
Native and cationic cellulose nanofibril films enriched with avocado seed compounds as a green alternative for potential wound care applications

Cellulose nanofibrils (CNF) show great potential for skin wound care and healing due to their biocompatibility, non-cytotoxicity, and high swelling with good mechanical stability. In the presented study, for the first time native and cationized cellulose nanofibrils were used in combination with avocado seeds extracts obtained with different extraction methods (ASE), as an alternative to a well-known antibiotic, Clindamycin, to produce films with high and long-lasting antimicrobial efficacy. The swelling capacity of prepared films and extracts/antibiotic release kinetics were studied at different pH values to evaluate pH response behavior.All developed films exhibited high bacteriostatic and bactericidal activity against Gram-negative Escherichia coli and G-positive Staphylococcus aureus, resulting in up to 100 % bacterial reduction with the log reduction factor up to 5.64 or 6.50, at 14.2 mg of avocado seed extract or clindamycin integrated in the 1 cm2 of CNF film. The high swelling capacity (up to 65.67 %) and stability of avocado seed extracts-enriched CNF films provide a suitable moisture environment and a sustainable release (up to 40.98 % in 48 h) of bioactive compounds. The prepared antibacterial films' chemical and morphological characteristics and pH-responsive behavior proved the potential applications in the cosmetics, biomedicine, and pharmaceutical industry.

Read full abstract
  • International Journal of Biological Macromolecules
  • Dec 5, 2024
  • Kaja Kupnik + 4
Just Published
Cite
Save

Preparation of sodium alginate/pectin/cellulose nanofibrils films containing black soybean seed coat anthocyanins for monitoring goat meat freshness

Preparation of sodium alginate/pectin/cellulose nanofibrils films containing black soybean seed coat anthocyanins for monitoring goat meat freshness

Read full abstract
  • Food Control
  • Dec 1, 2024
  • Siying Wang + 9
Just Published
Cite
Save

Durability of cellulose nanofibril films examined via residual drying stress measurement

Durability of cellulose nanofibril films examined via residual drying stress measurement

Read full abstract
  • Cellulose
  • Oct 27, 2024
  • Daniel J Franke + 2
Cite
Save

Visible light-activated dye-sensitized TiO2 antibacterial film: A novel strategy for enhancing food safety and quality

Antibacterial packaging holds promise in addressing food spoilage by inactivating bacteria, but current antimicrobial packaging solutions face challenges like depletion of antibacterials and concerns of antibiotic abuse. In response to these limitations of existing packaging materials, we developed a novel antibacterial packaging film by incorporating titanium dioxide (TiO2)- tetra(4-carboxyphenyl) porphyrin (TcPP) conjugates into cellulose nanofibrils (CNF) films. Unlike conventional antimicrobial packaging, this film harnesses visible light energy to excite electrons from TcPP to TiO2, generating reactive oxygen species (ROS) that inactivate bacteria without relying on antibiotics. Results demonstrated that the film reduced 4.5, 4.6, 4.1, and 4.7-log Escherichia coli, Pseudomonas fluorescens, Leuconostoc lactis, and Listeria innocua, respectively, in phosphate-buffered saline within 72h under 6000 lux light (3.13mW/cm2). The antimicrobial efficacy decreased as the light intensity decreased. Notably, it retains significant antimicrobial properties even under an extremely low light intensity of 600 lux (0.60mW/cm2). The analysis also revealed that singlet oxygen and hydrogen peroxide are the major generated ROS from the film under light exposure. When applied to cucumbers, the film reduced E. coli by 3.5 logs after 48-hour light exposure. The designed photocatalytic antibacterial film represents a major advancement in sustainable food preservation, reducing food waste by extending the shelf life of fresh produce.

Read full abstract
  • Journal of Hazardous Materials
  • Oct 24, 2024
  • Zhiyuan Xu + 9
Cite
Save

Characteristics of cellulose nanofibril films prepared by liquid- and gas-phase esterification processes

Abstract Cellulose nanofibrils (CNFs) are versatile materials, but their sensitivity to humidity affects performance. Esterification with fatty acids enhances the hydrophobicity of CNF films. This study compared gas- and liquid-phase esterification using three fatty acid chlorides at different dosages. Gas-phase esterification minimally affected cellulose crystallinity, maintaining a crystallinity index exceeding 55.8%, whereas liquid-phase esterification significantly reduced crystallinity. Gas-phase esterification achieved hydrophobicity (water contact angle >100°) with less fatty acid chlorides (0.50 eq/OH) compared to liquid-phase esterification (1.00 eq/OH). Tensile strength significantly dropped in the liquid phase (68.4–6 MPa) and up to an 8-fold decrease in the elastic modulus. Conversely, gas-phase esterification maintained tensile strength over 40 MPa, and elastic modulus increased by a minimum of 2.5 times. However, gas-phase esterification resulted in a 5-fold reduction in elongation at break (%). Thermogravimetric analysis indicated a high T max of 362°C for liquid-phase esterified samples and a substantial 24.9% residual weight for gas-phase esterified samples.

Read full abstract
  • e-Polymers
  • Sep 21, 2024
  • Jeong-Ki Kim + 9
Open Access
Cite
Save

Can pure cellulose nanofibril films replace polyolefins as water vapor barriers in packaging?

Despite significant research into cellulose nanofibril (CNF) films as substitutes to synthetic plastic materials, commercial applications remain very limited. One major hindrance is the poor water vapor barrier properties of CNF films compared to polyolefins, a critical property for product protection, such as food safety and preservation. To date, it is unknown whether full moisture barrier properties can be achieved with materials made by the assembly of nanofibers and fibrils. A comprehensive understanding of the effect of film structure on water vapor transport properties is required. Here, over 200 films were produced with a wide range of grammages from 30 g/m2 to 580 g/m2 by casting and spray deposition. Their structures were quantified by µCT and SEM and related to their water vapor transmission rates (WVTRs). Porosity and pore connectivity decreased with increasing film grammage, which correlates with the exponential decrease in WVTR. However, the WVTR plateaued at 30 g/m2day, indicating that the known open space and adsorption diffusion mechanisms cannot be fully eliminated by producing high grammage films. Pure cellulose nanofibril films therefore cannot replace polyolefins in packaging applications, requiring modifications such as coating and nanofillers.

Read full abstract
  • Journal of Colloid And Interface Science
  • Sep 14, 2024
  • Hans Estrella Cainglet + 7
Cite
Save

High aspect ratio cellulose nanofibrils with low crystallinity for strong and tough films

Cellulose nanofibril (CNF) films with both high strength and high toughness are attractive for applications in energy, packaging, and flexible electronics. However, simultaneously achieving these mechanical properties remains a significant challenge. Herein, a multiscale structural optimization strategy is proposed to prepare high aspect ratio CNFs with reduced crystallinity for strong and tough films. Carboxymethylation coupled with mild mechanical disintegration is employed to modulate the multiscale structure of CNFs. The as-prepared CNFs feature an aspect ratio of >800 and a crystallinity of <60 %. The film prepared using CNFs with a high aspect ratio (~1100) and reduced crystallinity (~54 %) exhibits a tensile strength of 229.9 ± 9.9 MPa and toughness of 22.2 ± 1.4 MJ/m3. The underlying mechanism for balancing these mechanical properties is unveiled. The high aspect ratio of the CNFs facilitates the transfer and distribution of local stress, thus endowing the corresponding film with high strength and toughness. Moreover, the low crystallinity of the CNFs permits the movement of the cellulose chains in the amorphous regions, thereby dissipating energy and finally increasing the film toughness. This work introduces an innovative and straightforward method for producing strong and tough CNF films, paving the way for their broader applications.

Read full abstract
  • Carbohydrate Polymers
  • Aug 22, 2024
  • Dejian Zhang + 3
Cite
Save

Hydrophobic, ultraviolet radiation-shielding, and antioxidant functionalities of TEMPO-oxidized cellulose nanofibril film coated with modified lignin nanoparticles

In this study, lignin nanoparticles (LN) and octadecylamine-modified LN (LN-ODA) were utilized as coating materials to enhance the hydrophobic, antioxidant, and ultraviolet radiation-shielding (UV-shielding) properties of a TEMPO-oxidized nanocellulose film (TOCNF). The water contact angle (WCA) of the TOCNF was approximately 53° and remained stable for 1 min, while the modified LN-ODA-coated TOCNF reached over 130° and maintained approximately 85° for an hour. Pure TOCNF exhibited low antioxidant properties (4.7 %), which were significantly enhanced in TOCNF-LN (81.6 %) and modified LN-ODA (10.3 % to 27.5 %). Modified LN-ODA-coated TOCNF exhibited antioxidant properties two to six times higher than those of pure TOCNF. Modified LN-ODA exhibited thermal degradation max (Tmax) at 421 °C, while pure LN showed the main degradation temperature at approximately Tmax 330 °C. The thermal stability of TOCNF-LN-ODA-coated materials remained consistent with that of pure TOCNF, while the crystallinity index of the sample showed a slight decrease due to the amorphous nature of the lignin structure. The tensile strength of TOCNF was approximately 114.1 MPa and decreased to 80.1, 51.3, and 30.3 MPa for LN-ODA coating at 5, 10, and 15 g/m2, respectively.

Read full abstract
  • International Journal of Biological Macromolecules
  • Aug 3, 2024
  • Le Van Hai + 11
Cite
Save

Water-resistant and barrier properties of poly(vinyl alcohol)/nanocellulose films enhanced by metal ion crosslinking

Polyvinyl alcohol (PVA) is a promising alternative to non-biodegradable flexible packaging materials, and nanocellulose is often used to enhance the properties of PVA films, but the composite films still have poor water resistance and barrier properties. To address this issue, iron ions (Fe3+) were introduced into PVA/cellulose nanofibrils (CNF) films, and Fe3+ formed coordination bonds with carboxyl and hydroxyl groups on the surface of CNF and PVA chains. Therefore, constructing a strong coordination crosslinking network within the film and improving the interfacial interaction between PVA and CNF. The water resistance, mechanical and barrier properties of the crosslinked films were significantly improved. Compared with the un-crosslinked film, the oxygen transmission rate (OTR) was decreased by up to 67 %, and the water swelling ratio was significantly reduced from 1085 % to 352 %. The tensile strength of the film with 1.5 wt% Fe3+ reached 41.93 MPa, which was 62 % higher than that of the un-crosslinked film. Furthermore, the composite film demonstrated good recyclability, almost recovering its original mechanical properties in two recycling tests. This simple and effective method for preparing water resistance and barrier films shows potential applications in flexible packaging areas.

Read full abstract
  • International Journal of Biological Macromolecules
  • Jul 28, 2024
  • Ying Ren + 3
Cite
Save

Enhancement of cellulose nanofibril (CNF) film barrier properties by nanofibril alignment

Enhancement of cellulose nanofibril (CNF) film barrier properties by nanofibril alignment

Read full abstract
  • Cellulose
  • Jul 24, 2024
  • Nabanita Das + 3
Cite
Save

A facile spinning approach towards the continuous production of aligned nanocellulose films

In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin films. During the spinning process, a CNF suspension is injected into a coagulation bath, where the partially aligned CNF network is locked. The CNF alignment of the dry films is then detected by wide angle X-ray scattering (WAXS). The comparison between the ultimate strengths and strengths at breaks of the films produced with different process parameters, including the suspension injection rate, bath pH, and bath flow rate, indicated no significant change in mechanical properties, suggesting a reliable and constant outcome for large-scale film fabrication. Furthermore, the produced films demonstrated high total light transmittance of 93 % at the wavelength of 550 nm, making them suitable for optoelectronic applications. Polarized optical microscopy revealed that even a low degree of CNF alignment can lead to anisotropic optical properties. Moreover, an anisotropic response to humidity was observed, in which the films preferentially bend in the perpendicular direction of the CNF orientation, thus opening a way for humidity-driven actuators.

Read full abstract
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • Jul 20, 2024
  • Hamidreza Daghigh Shirazi + 3
Open Access
Cite
Save

Controlled shrinkage of cellulose nanofibril films to enhance mechanical and barrier properties

Standalone cellulose nanofibril (CNF) films have a natural tendency to shrink upon drying from wet conditions due to capillary drying stresses. This shrinkage happens in both the radial direction, and the vertical direction. In this study, we prepared two types of CNF films- one in a restrained condition that did not allow shrinkage in the radial direction but enabled it in the vertical direction and another with 11 % radial shrinkage but limited vertical shrinkage. The radial shrinkage led to a more porous structure than the vertical shrinkage, which brought about poorer oxygen/moisture barrier performance. However, the density and oxygen permeability of the films converged to a similar value upon a simple thermocompression process. Radial shrinkage resulted in 140 % and 90 % higher strain at break and toughness in films with a significant sacrifice in strength and modulus. Scanning electron microscopy revealed that radial shrinkage formed wavy layers in the core structure leaving more free space, whereas vertical shrinkage formed flatter layers. Radial shrinkage is likely to produce a thicker individual layer in the core structure of CNF films than vertical shrinkage. The insight from this study will help tune the mechanical and barrier performance of CNF films and their composites.

Read full abstract
  • Carbohydrate Polymers
  • Jun 11, 2024
  • Md Ikramul Hasan + 2
Cite
Save

Andiroba Oil (Carapa guianensis Aubletet) as a Functionalizing Agent for Titica Vine (Heteropsis flexuosa) Nanofibril Films: Biodegradable Products from Species Native to the Amazon Region

The diversity of species in Amazonia is exceptionally vast and unique, and it is of great interest for industry sectors to explore the potential of derivatives with functional properties for packaging applications. This study proposes the functionalization of cellulose micro/nanofibril (MFC/NFC) suspensions from Heteropsis flexuosa with andiroba oil to produce films with packaging potential. MFC/NFC was produced by using mechanical fibrillation from suspensions of H. flexuosa fibers. Proportions of 1, 3, and 5% of andiroba oil were added to make films with concentrations of 1% (m/m). Suspensions with andiroba oil provided greater viscosity, with changes in the physical properties of the films. Functionalization with andiroba oil provided films with lower degradation in water, greater contact angle, and lower wettability despite high permeability to water vapor. The films with 1% andiroba oil showed a hydrophobic characteristic (contact angle &gt; 90°) and greater puncture resistance (6.70 N mm−1). Films with 3% oil showed a more transparent appearance and high biodegradation, while 1% oil generated more opaque films with a higher thermal degradation temperature and high antioxidant activity. It was concluded that films produced from H. flexuosa fibers functionalized with andiroba oil showed packaging potential for light, low-moisture products due to their adequate thermal and barrier characteristics.

Read full abstract
  • Sustainability
  • May 22, 2024
  • Cleyson Santos De Paiva + 21
Open Access
Cite
Save

Cutting processability of metal-ion-containing cellulose nanofibril films by continuous wave laser

Understanding the cutting processability of cellulose nanofibril (CNF) films by continuous wave laser is important for precise shape processing that closely follows the design pattern. In this study, laser cutting of films made of surface-carboxylated CNFs with various counterionic species was performed to explore the factors that control the cutting processability. The cut width and the thermally affected width are mainly controlled by the laser irradiation energy per unit length. The processed cross section is tapered and rises above the film thickness. NMR analysis suggests that the pyrolysates contain water-soluble cello-oligosaccharides, the molecular weight of which varies with the type of CNF film. We consequently demonstrated that the COOH-type CNF film is preferable to the COONa-type CNF film for reducing the coloration residue and for processing the film into a shape that best follows the designed processing pattern.

Read full abstract
  • Carbohydrate Polymers
  • Apr 25, 2024
  • Natsuo Suzuki + 2
Cite
Save

Layer-by-layer assembly induced strong, hydrophobic and anti-bacterial TEMPO oxidized cellulose nanofibrils films for highly efficient UV-shielding and oil-water separation

Anti-ultraviolet material with cost-effectiveness, environmental friendliness, and multifunction is urgently needed to address the serious problem of ultraviolet radiation. However, traditional anti-ultraviolet products based on plastics are unsustainable and harmful to the environment. Herein, the cellulose films with a sandwich structure using a surface assembly technique were reported. Natural L-phenylalanine was grafted onto cellulose nanofibrils via amidation to enhance their UV-shielding property. To address the hydrophilic nature and limited mechanical strength of cellulose films, we employed octadecyltrichlorosilane and 4ARM-PEG-NH2 for hydrophobic coating and mechanical reinforcement, respectively. In addition to providing complete UV resistance in the wavelength range of 200–320 nm, sample OPT5 exhibited significantly improved tensile stress, Young's modulus, and toughness, measuring 174.09 MPa, 71.11 MPa, and 295.33 MJ/m3, respectively. Furthermore, due to the presence of antibacterial amine groups, the modified film demonstrated a satisfactory inhibitory effect on the growth of Escherichia coli and Bacillus subtilis. Compared to natural cellulose films, the hydrophobically modified material achieved a contact angle of up to 121.1°, which enabled efficient separation of oil-water mixtures with a maximum separation efficiency of 93.87 %. In summary, the proposed TOCNF-based UV-shielding film with multifunctionality holds great potential for replacing petrochemical-derived plastics and serving as an applicable and sustainable membrane material.

Read full abstract
  • International Journal of Biological Macromolecules
  • Aug 25, 2023
  • Yuxuan Ren + 4
Cite
Save

Biodegradable Cellulose Nanofibril Films with Active Functionality for Food Packaging Applications

Biodegradable Cellulose Nanofibril Films with Active Functionality for Food Packaging Applications

Read full abstract
  • ACS Food Science &amp; Technology
  • Aug 3, 2023
  • Suriyaprakaash Lakshmibalasubramaniam + 3
Cite
Save

The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties

In this study, cellulose nanofibril (CNF) films from ramie fibers were prepared with different pectin compositions and contents, and the influence of residual pectin on the overall performances of CNF films was evaluated. There was no significant effect of the residual pectin composition on the properties of obtained CNF films. However, when the content of residual pectin was increased from 0.45 % to 9.16 %, the surface area and water absorption of CNF films were increased from 0.2223 to 0.3300 m2/g, and from 93.51 % to 122.42 %, respectively. Pectin covers the CNF surface and act as a physical barrier between the cellulose fibrils; thus the nanocellulose films with high pectin content will have a loose and porous structure, resulting in a high surface area and a high water absorption. Besides, with the residual pectin content decreasing from 9.16 % to 0.45 %, the UVA light transmittance and tensile strength of CNF films were increased from 30.6 % to 59.9 %, and from 37.67 to 100.26 MPa, respectively. After removal of amorphous pectins in CNFs, the low pectin containing CNFs are able to pack more compactly to form a strong and thin film. This paper provides guidance for the preparation of CNF films with different performance requirements.

Read full abstract
  • International Journal of Biological Macromolecules
  • Jul 13, 2023
  • Liru Luo + 8
Cite
Save

Fabrication of transparent cellulose nanofibril composite film with smooth surface and ultraviolet blocking ability using hydrophilic lignin

Ecofriendly multifunctional films with only biomass-based components have gathered significant interest from researchers as next-generation materials. Following this trend, a TEMPO-oxidized cellulose nanofibril (TOCNF) film containing hydrophilic lignin (CL) was fabricated. To produce the lignin, peracetic acid oxidation was carried out, leading to the introduction of carboxyl groups into the lignin structure. By adding hydrophilic lignin, various characteristics (e.g., surface smoothness, UV protection, antimicrobial activity, and barrier properties) of the TOCNF film were enhanced. In particular, the shrinkage of CNF was successfully prevented by the addition of CL, which is attributed to the lower surface roughness (Ra) from 18.93 nm to 4.99 nm. As a result, the smooth surface of the TOCNF/CL film was shown compared to neat TOCNF film and TOCNF/Kraft lignin composite film. In addition, the TOCNF/CL film showed a superior UV blocking ability of 99.9 % with high transparency of 78.4 %, which is higher than that of CNF-lignin composite films in other research. Also, water vapor transmission rate was reduced after adding CL to TOCNF film. Consequently, the developed TOCNF/CL film can be potentially utilized in various applications, such as food packaging.

Read full abstract
  • International Journal of Biological Macromolecules
  • Jun 22, 2023
  • Jong-Chan Kim + 7
Cite
Save

Hornification of cellulose-rich materials – A kinetically trapped state

The fundamental understanding concerning cellulose-cellulose interactions under wet and dry conditions remains unclear. This is especially true regarding the drying-induced association of cellulose, commonly described as an irreversible phenomenon called hornification. A fundamental understanding of the mechanisms behind hornification would contribute to new drying techniques for cellulose-based materials in the pulp and paper industry while at the same time enhancing material properties and facilitating the recyclability of cellulose-rich materials. In the present work, the irreversible joining of cellulose-rich surfaces has been studied by subjecting cellulose nanofibril (CNF) films to different heat treatments to establish a link between reswelling properties, structural characteristics as well as chemical and mechanical analyses. A heating time/temperature dependence was observed for the reswelling of the CNF films, which is related to the extent of hornification and is different for different chemical compositions of the fibrils. Further, the results indicate that hornification is related to a diffusion process and that the reswellability increases very slowly over long time, indicating that equilibrium is not reached. Hence, hornification is suggested to be a kinetically limited phenomenon governed by non-covalent reversible interactions and a time/temperature dependence on their forming and breaking.

Read full abstract
  • Carbohydrate Polymers
  • Jun 19, 2023
  • Farhiya Alex Sellman + 3
Open Access
Cite
Save

Spray Deposited Cellulose Nanofibril Films: A Recyclability Study

Synthetic packaging has excellent performance, but most of them becomes a waste after their use and thus, poses serious concerns to the environment and consumer health. Considering current circumstances, the demand for sustainable packaging that is either recyclable or biodegradable if discarded has increased tremendously in last few years. Cellulose nanofibril (CNF) films are emerging as a sustainable packaging; however, their high energy consumption associated with the production of fibres and reduced properties on recycling are serious concerns. The aim of this study is to assess the recycling characteristics of spray deposited CNF films. For this purpose, the CNFs were recycled at different revolutions (75 × 103 to 999 × 103) in a laboratory disintegrator, followed by screening and their physical, barrier and environmental characteristics were evaluated. Results showed that recycled CNF films at 300 × 103 revolutions had identical barrier performance as compared with the non-recycled films. Additionally, the films after first recycling have maintained their mechanical properties without compromising their dimensional stability. However, the mechanical performance and transmittance of these films after the 2nd recycling have slightly reduced due to the agglomeration of the fibres as affirmed by the SEM images. The CNF films showed slightly higher environmental impact in terms of their embodied energies than conventional packaging; however, these impacts are expected to be lower on possibly further recycling of these films. The ease of recycling of these films without compromising the dimensional stability is an excellent route to contribute towards global sustainability.Graphical

Read full abstract
  • Waste and Biomass Valorization
  • Apr 29, 2023
  • Humayun Nadeem + 6
Open Access
Cite
Save

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • .
  • .
  • 1
  • 2
  • 3
  • 4
  • 5

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram

Copyright 2024 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers