Abstract

The fundamental understanding concerning cellulose-cellulose interactions under wet and dry conditions remains unclear. This is especially true regarding the drying-induced association of cellulose, commonly described as an irreversible phenomenon called hornification. A fundamental understanding of the mechanisms behind hornification would contribute to new drying techniques for cellulose-based materials in the pulp and paper industry while at the same time enhancing material properties and facilitating the recyclability of cellulose-rich materials. In the present work, the irreversible joining of cellulose-rich surfaces has been studied by subjecting cellulose nanofibril (CNF) films to different heat treatments to establish a link between reswelling properties, structural characteristics as well as chemical and mechanical analyses. A heating time/temperature dependence was observed for the reswelling of the CNF films, which is related to the extent of hornification and is different for different chemical compositions of the fibrils. Further, the results indicate that hornification is related to a diffusion process and that the reswellability increases very slowly over long time, indicating that equilibrium is not reached. Hence, hornification is suggested to be a kinetically limited phenomenon governed by non-covalent reversible interactions and a time/temperature dependence on their forming and breaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call