Current hardware approaches to biomimetic or neuromorphic artificial intelligence rely on elaborate transistor circuits to simulate biological functions. However, these can instead be more faithfully emulated by higher-order circuit elements that naturally express neuromorphic nonlinear dynamics1-4. Generating neuromorphic action potentials in a circuit element theoretically requires a minimum of third-order complexity (for example, three dynamical electrophysical processes)5, but there have been few examples of second-order neuromorphic elements, and no previous demonstration of any isolated third-order element6-8. Using both experiments and modelling, here we show how multiple electrophysical processes-including Mott transition dynamics-form a nanoscale third-order circuit element. We demonstrate simple transistorless networks of third-order elements that perform Boolean operations and find analogue solutions to a computationally hard graph-partitioning problem. This work paves a way towards very compact and densely functional neuromorphic computing primitives, and energy-efficient validation of neuroscientific models.
Read full abstract