The production of antimicrobial sachet from silica-alginate-nanocellulose composite beads as carrier materials with the addition of nanocellulose (0, 1, 3, 5%) as nanofiller and cinnamon essential oil (CEO) as antimicrobial agent was investigated. The nanocellulose was isolated from oil palm empty fruit bunches by mechanical treatment using a combination of ultrafine grinding and ultrasonication. The produced composite beads were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and x-ray diffraction (XRD) analysis. The produced composite beads with 5% nanocellulose (BDCN5) was more compact and spherical than others. Meanwhile, the produced antimicrobial sachets were performed with release characteristic and antimicrobial tests. The antimicrobial sachet with the addition of nanocellulose showed the cinnamon essential oil was significantly released from beads for 60 min and had a high inhibitory effect. Almost all microorganisms tested by BDCN5 showed a high inhibitory effect, 5.43% for inhibiting Escherichia coli, 5.19% for Salmonella sp, 3.36% for Aspergillus sp, and 8.72% for Staphylococcus aureus.