The goal of the research was to develop a hydrophobic octanoate salt of chitosan (CS–OA) and use the salt as a nanoparticle platform for the delivery of curcumin (CUR) into prostate cancer cells. The nanoprecipitation technique was used to prepare the nanoparticles, which were measured for particle size and encapsulation efficacy relative to CUR–CS nanoparticles. The cytotoxicity of CUR–OA–CS nanoparticles was evaluated in prostate cancerous cells (PC3 and DU145) in comparison with the corresponding blank nanoparticles and hydroalcoholic CUR solution. PXRD, SEM, and TEM were also used to examine the CUR–CS–OA nanoparticles. The average diameters of the CUR–CS–OA and CUR–CS nanoparticles were 268.90 ± 3.77 nm and 221.90 ± 2.79 nm, respectively, with encapsulation efficiencies of 61.37 ± 1.70% and 60.20 ± 3.17%. PXRD and SEM suggested CUR amorphization in the CS–OA nanoparticles. The void nanoparticles exhibited concentration-dependent antiproliferative action, which was attributed to the cellular uptake of CS. CUR loading into these nanoparticles increased their cytotoxicity even more. The potential of CS–OA nanoparticles as a special delivery system for additional cytotoxic drugs into different malignant cells can be further explored.
Read full abstract