In the present study, I have investigated the effect of different annealing time durations of 0.5h, 1h, 2h and 4h (annealing temperature at 700oC) on the electrical, micro structural and superconducting properties of the nano hexagonal boron nitride (hBN) added/doping magnesium diboride (MgB2) superconducting samples. The aim of this work, hBN added MgB2 superconducting bulk samples are determined to find out the optimum sintering time, also investigated how BN addition effects the optimum fabrication conditions. These superconducting samples were prepared by the conventional solid-state reaction method. Experimental techniques of X-ray diffraction (XRD) were used for structural and microstructural examinations. Critical transition temperatures, difference between Tc-onset and Tc-offset, a and c lattice parameter, grain size, bulk density, residual resistivity ratios (RR) and cross-sectional area fractions (AF) of the pure and nano-hBN added MgB2 materials are obtained using a cryostat equipped with a superconducting magnet. All the experimental results notice that the characteristic features improve regularly with the increment in sintering time durations.