Naked oats (Avena nuda L.) is rich in protein, fat, vitamin, mineral elements and so on, and is one of the world's recognized cereal crops with the highest nutritional and healthcare value. In July 2019, leaf spot was detected on A. nuda in Zhangbei experimental station of Hebei Agricultural University. The incidence of disease is 10% to 20%. The symptoms were similar to anthracnose disease, the infected leaves had fusiform or nearly fusiform yellowish-brown spots, yellow halo around the spots. Numerous acervuli with black setae diagnostic of fungi in the genus Colletotrichum were present on necrotic lesions. To identify the pathogen, ten symptomatic leaves were collected, and only one disease spot was isolated from each leaf. Small square leaf pieces (3 to 5 mm) were excised from the junction of diseased and healthy tissues with a sterile scalpel and surface disinfested with 75% alcohol for 30s, 0.1% corrosive sublimate for 1 min, rinsed three times in sterile water. Plant tissues were then transferred on potato dextrose agar (PDA), and incubated at 25°C for 7 days. Two fungal isolates were obtained and purified by single-spore isolation method. All fungi have the same morphology and no other fungi were isolated. The aerial mycelium was gray black. The conidia were colorless and transparent, falcate, slightly curved, tapered toward the tips, and produced in acervuli with brown setae. The length and width of 100 conidia were measured and size ranged from 1.86 to 3.84 × 8.62 to 29.81 μm. These morphological characteristics were consistent with the description of Colletotrichum cereale (Crouch et al. 2006). To further assess the identity of the species, the genomic DNA of two fungal isolates (LYM19-4 and LYM19-10) was extracted by a CTAB protocol. The ribosomal DNA internal transcribed spacer (ITS) region as well as, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), and the beta-tubulin 2 (Tub2) partial genes were amplified and sequenced with primers ITS4/5, GDF/GDR, ACT-512F/ACT-783R, and T1/Bt2b, respectively (Carbone et al. 1999; Templeton et al. 1992; O'Donnell et al. 1997; Glass et al. 1995). The sequences of the ITS-rDNA region (MW040121, MW040122), the GAPDH sequences (MW052554, MW052555), the ACT sequences (MW052556, MW052551) and the Tub2 sequences (MW052552, MW052553) of the two single-spore isolates were more than 99% identical to C. cereale isolate CGMCC3.15110 (JX625159, KC843517, KC843534 and JX625186). Maximum likelihood tree based on concatenated sequences of the four genes were constructed using MEGA7. The results showed the strains isolated from A. nuda were closely related to C. cereale, as supported by high bootstrap values. A pathogenicity test of the C. cereale isolates was performed on first unfolding leaves of A. nuda. Koch's postulates were carried out with isolates by spraying a conidial suspension of 106 conidia/mL on leaves of healthy A. nuda. Four replicated pots were inoculated at a time, 10 leaves each pot, while sterile distilled water was used as the control. All treated plants were placed in a moist chamber (25°C, 16-h light and 8-h dark period). Anthracnose symptoms developed on the inoculated plants 7 days post inoculation while all control plants remained healthy. Microscopic examination showed the surface of infected leaves had the same acervuli, setae, and conidia as the original isolate. The pathogenicity test was repeated three times. C. cereale was previously reported as the causal agent of anthracnose on feather reed grass in US (Crouch et al. 2009). To our knowledge, this is the first report of C. cereale as the causal agent of A. nuda anthracnose in China.