Paraneoplastic syndromes (PNS) are a group of rare disorders triggered by an immune response to malignancy, characterized by diverse neurological, muscular, and systemic symptoms. This study aims to leverage machine learning to develop a predictive model for cancer diagnosis in patients with paraneoplastic autoantibodies. Demographic data included age and sex, and presenting symptoms were recorded. Laboratory data comprised serum or cerebrospinal fluid (CSF) paraneoplastic autoantibody panels. The study included participants who tested positive for at least one autoantibody. Naive Bayes model was used to predict cancer presence. Model performance was evaluated using sensitivity, specificity, likelihood ratios, predictive values, AUC-ROC, Brier score, and overall accuracy. Feature importance was assessed using SHapley Additive exPlanations (SHAP) values. A graphical user interface (GUI)-based application was developed to facilitate model use. The study included 116 participants, with an average age of 57.1years and a higher proportion of females (53.4%). The most common presenting symptom was ''Motor'' (40.5%), followed by ''Cognitive'' (17.2%) and ''Bulbar'' (15.5%) symptoms. Cancer was present in 23 participants (19.8%). The Naive Bayes model demonstrated high performance with a sensitivity of 85.71% and specificity of 100.00%. The AUC-ROC was 0.9795, indicating excellent diagnostic capability. Age and the presence or absence of specific autoantibodies were significant predictors of cancer. Machine learning models, such as the Naive Bayes classifier developed in this study, can accurately stratify cancer risk in patients with positive paraneoplastic autoantibodies.
Read full abstract