A fractured cephalomedullary femoral nailing system was investigated for the clinical and mechanical reasons responsible for its failure. Optical and scanning electron microscopes were utilized to investigate the fracture surface characteristics. Striations presented on the surface indicated mechanical fatigue. A qualitative material conformity test was conducted using available resources and found to be inconclusive, requiring more advanced testing of Ti-15Mo per ASTM standards in a third-party laboratory. In addition, the investigation showed that there is evidence of overloading failure once the fatigue-propagated crack reached a critical size. Based on the observed features, it is possible that nail and self-tapping helical screw interference may have occurred. The interior wall of the nail exhibited damage, allowing a surface crack to form. This surface crack was propagated due to cyclic loading occurring as a result of activities of daily living. The propagation of cracks formed the striations seen on the failed device. This continued for a period of time up until the crack grew to the point where the structure of the nail could no longer withstand the load and catastrophically failed by overloading.
Read full abstract