Esophageal adenocarcinoma carries a poor prognosis associated with a 5-year survival rate of 12.5–20%. Therefore, a new therapeutic modality is needed for this lethal tumor. Carnosol is a phenolic diterpene purified from the herbs such as rosemary and Mountain desert sage and has been shown to have anticancer activities in multiple cancers. In this study we examined the effect of carnosol on cell proliferation in esophageal adenocarcinoma cells. We found that carnosol dose-dependently decreased cell proliferation in FLO-1 esophageal adenocarcinoma cells and significantly increased caspase-3 protein, indicating that carnosol decreases cell proliferation and increases cell apoptosis in FLO-1 cells. Carnosol significantly increased H2O2 production and N-acetyl cysteine, a reactive oxygen species (ROS) scavenger, significantly inhibited carnosol-induced decrease in cell proliferation, indicating that ROS may mediate carnosol-induced decrease in cell proliferation. Carnosol-induced decrease in cell proliferation was partially reversed by NADPH oxidase inhibitor apocynin, suggesting that NADPH oxidases may be partially involved in carnosol’s effect. In addition, carnosol significantly downregulated SODD protein and mRNA expression and knockdown of SODD significantly inhibited the carnosol-induced reduction in cell proliferation, suggesting that downregulation of SODD may contribute to carnosol-induced reduction in cell proliferation. We conclude that carnosol dose-dependently decreased cell proliferation and significantly increased caspase-3 protein. Carnosol’s effect may be through the overproduction of ROS and the downregulation of SODD. Carnosol might be useful for the treatment of esophageal adenocarcinoma.
Read full abstract