Klebsiella oxytoca KP001-TF60 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflBΔtdcDΔpmd) was re-engineered to direct more carbon flux towards succinate production with less acetate. Glucose uptake, cell growth, and carbon distribution were restricted by alterations in relative expressions and nucleotide sequences of genes associated with PEP and pyruvate metabolisms. Transcripts of pck, ppc, and frd genes were up-regulated for enhancing NADH reoxidation during succinate production while increased pyk and tdcE transcripts were observed due to maintenance of acetyl-CoA through the oxidative branch of TCA cycle. Based on whole-genome sequencing, several genes in sugars-specific PTS (ptsG, bglF, chbR, fruA, mtlR, and treY), ABC transporters (alsK, and rbsK), Major Facilitator Superfamily (uhpB and setB), and catabolite repression (cyaA and csrB) were found to be mutated. The strain produced succinate yield up to 0.89 g/g (∼80 % theoretical maximum) with acetate < 1 g/L, and may be one of the succinate producers applied in an industrial-production scale with simplified purification processes.
Read full abstract