In order to solve the problem of the corrosion and wear of N80 metal pipelines exposed to corrosive media and abrasive sand during the development of petroleum resources, the proposed solution involves utilizing HC-PECVD technology to deposit a series of multilayer Si-DLC films with varying thicknesses on the inner surfaces of the N80 steel pipes. This investigation systematically explored the microstructure, mechanical properties, tribological features, and corrosion resistance of the multilayer Si-DLC films. Remarkably, after coating the multilayer (Si-DLC)40 film on the inner wall of the N80 tube, the friction coefficient decreased from 0.7~0.75 to 0.2~3, and the wear rate decreased by two orders of magnitude. In addition, the corrosion current decreased by 50%, and the impedance doubled in a 3.5 wt% NaCl solution saturated with CO2. Thus, the multilayer (Si-DLC)40 film on the inner wall of the N80 tube exhibited superior tribological properties and exceptional corrosion resistance. These findings are anticipated to furnish valuable data and technical insights for mitigating corrosion in N80 steel pipes during petroleum exploitation.