In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.