ABSTRACTThe structure, morphology, and transport properties of thin films of InN grown on several cubic semiconductors has been studied as a function of substrate temperature. Films were deposited using rf-magnetron sputtering onto the (111) face of GaAs, Ge, Si and ZrO2. In general, the film structure is such that (00.1)InN parallels the (111) plane of the cubic substrate above some deposition temperature. The in-plane structural coherence duplicates the magnitude of the calculated lattice mismatch between InN and the substrate. Electrical transport properties for growth onto (111) ZrO2 were characterized by n-type carrier concentration and mobilities ranging up to 44 cm2 /Vsec. A morphology-induced decrease in electrical mobility is observed for deposition temperatures above 350°C, as shown by SEM.