Bladder cancer (BC) is recognized as environmentally related. The interaction of environmental exposure to chemicals and genetic susceptibility seem to play important roles in BC development. In order to improve diagnosis and the recognition of BC risk, a group of markers which combine genetic susceptibility with detoxification and nuclear matrix protein (NMP22) is proposed. The aim of the study was to examine the utility of nuclear matrix protein (NMP22) as a diagnostic marker in BC in genetic susceptibility (NAT2 slow acetylators) combined with detoxification abilities (glutathione S-transferase GST and isoenzyme GST-π). The NMP22 level in urine, N-acetyltransferase 2 (NAT2) genotype and GST activity in hemolysate blood, as well as isoenzyme GST-π level, were determined in the urine and serum of 43 patients with BC and from 25 non-cancer controls. NMP22 and isoenzyme GST-π levels were measured by ELISA. The NAT2 genotype was examined in DNA isolated from whole blood using the PCR (Polymerase Chain Reaction) technique, while the activity of GST was determined with the spectrophotometric method. In the BC group, NMP22 (p = 0.005) concentration, GST-π (p = 0.003) in urine and GST (p = 0.009) activity in blood were statistically significantly higher than in the healthy controls. The majority of BC patients were slow acetylators (NAT2 genotype). A correlation between the level of nuclear matrix protein NMP22 and GST was found in all BC group (p = 0.007) and also slow acetylators (p = 0.0147). The results support the utility of a marker combination, which covers the genetic susceptibility to chemicals with the level of detoxification and nuclear matrix protein in BC patients. A relationship between NMP22 level in urine, GST level in blood and NAT2 genotype was observed. Also the isoenzyme GST-π in urine seems useful as a marker of BC.
Read full abstract