Abstract During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. We show that histologically normal breast tissue from younger women who are susceptible to breast cancer because they harbor a germline mutation in BRCA1, BRCA2, or PALB2 genes, exhibit hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells, and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory, and cancer-related pathways. Genetically high risk luminal epithelial cells also show evidence of accelerated age, by as much as four decades compared to their chronological age, using a breast specific biological clock comprised of measurements of methylation and expression of the luminal-specific ELF5 transcription factor. We have identified breast aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk, or the associated breast cancer subtype. Citation Format: Masaru Miyano, Sundus Shalabi, Rosalyn W. Sayaman, Martha Stampfer, Victoria E. Seewaldt, Mark A. LaBarge. Accelerated biological age is a driver of cancer susceptibility in genetic high risk breast tissue [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5682.