Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-β superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that −987 to +168 and −105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (−527 to −512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.
Read full abstract