The study examined curcumin's impart on relieving neuroinflammation of juvenile rats in kainic acid (KA) induced epileptic seizures by inhibiting the TLR4/MyD88/NF-κB pathway. There were five groups: control, KA, KA + curcumin (KC), KA + oxcarbazepine (OXC) (KO), KA + curcumin + OXC (KCO) groups. KA was stereotactically injected into right hippocampus following intraperitoneal injection of curcumin or (and) OXC for seven days. The rats in the above groups were randomly divided into three subgroups (at 6h, 24h, and 72h of KA administration) following the seizure degree assessed. The number of NeuN (+) neurons and GFAP (+) astrocytes was counted. The gene and protein levels of TLR4, MyD88, and NF-κB were detected. Compared with the KA group, the seizure latency was longer, and the incidence of status epilepticus (SE) was lower in the KC, KO, and KCO groups. The most significant changes were in the KCO group. At 72h following KA injected, the number of neurons was the least, and the number of astrocytes was the most in the KA group. The number of neurons was the most and the number of astrocytes was the least in the KCO group. At 24h, the mRNA and protein levels of TLR4, MyD88, and NF-κB in the KA group were the most. The above valves were the least in the KCO group. Therefore, curcumin could enhance anti-epileptic effect of OXC, protect injured neurons and reduce proliferated glial cells of the hippocampus of epileptic rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.
Read full abstract