Abstract

Numerous studies have shown that arsenic (As) is an important hazardous metalloid that is commonly considered to have systemic toxicity. The main pathway of arsenic exposure is oral; however, many of the events that occur during its passage through the gastrointestinal tract are unclear, and there are few reports on the effect of arsenic on small intestinal mucosal barrier. This study aimed to investigate arsenic-induced mucosal barrier damage in the small intestine of mice induced by oral exposure and its potential mechanisms. In the present study, histomorphometric and immunohistochemical analyses showed that arsenic-treated mice exhibited signs of irregularly arranged and atrophied small intestinal villi, reduced villus lengths, inflammatory cells infiltration, along with up-regulated expression of inflammatory factors TNF-α, IL-6 and IL-1β in the small intestine of mice. The myeloperoxidase (MPO) activity was also increased in As-exposed mice. Transmission electron microscopy (TEM) analysis demonstrated that intestinal epithelial tight junctions (TJs) were impaired in the small intestines of mice in As group. In addition, arsenic down-regulated mRNA levels of TJ-related genes (ZO-1, ZO-2, occludin, claudin-1, and claudin-7) and protein levels of ZO-1, occludin and claudin-1 were significantly reduced in arsenic-treated groups, while arsenic also increased levels of TLR4, Myd88, NF-κB, RhoA, and ROCK mRNA and protein expression. In summary, these results indicate that the small intestine toxicity in mice evoked by arsenic was correlated with the activation of TLR4/Myd88/NF-κB and RhoA/ROCK pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call