Tuberculosis (TB) of the spine is a highly disruptive disease, especially in underdeveloped and developing countries. This condition requires standard TB treatment for 9-18 months, which increases patient risk of drug-resistant TB. Consequently, this raises the concern of adopting additional therapies to shorten the treatment duration, improve the efficacy of anti-TB drugs, and further decrease damage in the affected tissues and organs. Matrix metalloproteinase- (MMP-) 1 is a key regulator of the destruction of the extracellular matrix and associated proteins and is a new potential target for TB treatment research. In the present study, we investigated the effects of doxycycline as an MMP-1 inhibitor in patients with spondylitis TB. Seventy-two New Zealand white rabbits with spondylitis TB were divided into 12 different groups based on incubation period (2, 4, 6, and 8 weeks) and doxycycline administration (without, 1 mg/kg body weight (BW), and 5 mg/kg BW). We observed the course of infection through the blood concentration changes and immunohistochemical examination of MMP-1, in addition to BTA staining, culture, polymerase chain reaction (PCR), and histopathological examination. Treatment with once daily 5 mg/kg BW doxycycline significantly improved the blood MMP-1 level (p < 0.05) compared with the placebo and 1 mg/kg BW doxycycline. A significantly reduced ongoing infection and a higher healing rate were demonstrated in rabbits with a higher doxycycline dose through BTA staining, culture, PCR, and histopathology. Various degrees of vertebral endplates, vertebral body, and intervertebral disc destruction were observed in 32 rabbits with positive histopathological findings, in addition to positive inflammatory cell infiltration, characterized by numerous lymphocytes, macrophages, and epithelial cells, as well as abundant granulation tissue and necrotic substances proximal to the inoculated vertebral area. Bone and intervertebral disc destructions were more apparent in the untreated rabbits. Our study demonstrated the potential of doxycycline as an adjunctive treatment in spondylitis TB. However, limitations remain regarding the differences in the pathogenesis and virulence of Mycobacterium tuberculosis between rabbit and human systems, sample size, and the dose-dependent effect of doxycycline. Further studies are needed to address these issues.