Abstract This article focuses on reducing mutual coupling between the ports of dielectric resonator antenna (DRA) using defected ground structures (DGSs). The antenna has the dimension of 50 mm × 50 mm × 8.5 mm. The resonating element in the proposed two-port radiator consists of a cylindrical structure of alumina ceramic (ɛr = 9.8). The rectangular-shaped aperture is utilized to excite both of the resonating elements. The resonating ceramic elements acting as radiators are offset-fed to enhance the antenna’s coupling. Combining interdigital-shaped and semicircular arc-shaped DGSs improves isolation between two resonating elements, embodying the structural novelty. The measured operating frequency range of Port-1 and Port-2 is 5.19–6.7 and 5.15–6.68 GHz, resonating at 5.58 and 5.56 GHz, respectively. The measured mutual coupling between the two ports is −35.5 dB. The measured gain for Port-1 is depicted to be 5.5 dB. The presented multiple-input–multiple-output (MIMO) radiator in this article is an appropriate candidate for WLAN (5.25–5.35, 5.47–5.725, 5.725–5.85, 5.850–5.925 GHz) and WiMAX(5.5 GHz) applications. All the simulated and experimentally observed MIMO parameters of the radiator are discovered to be within optimal bounds.
Read full abstract