Abstract BACKGROUND Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas (pHGGs). This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase). Consequently, reduced H3K36me3 is observed on H3.3G34V nucleosomes relative to wild-type, contributing to genomic instability and driving a distinct gene expression signature associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3.3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3.3G34V mutant protein in pediatric glioma on H3K36me3, H3K27me3 and H3.3 enrichment in vitro. METHODS Experiments were conducted using an established H3.3G34V mutant patient-derived pediatric high-grade glioma cell line (KNS42), and Histone H3.3 wild-type human astrocytes (NHAs). Lentiviral delivery of a doxycycline-inducible RNAi vector targeted against H3F3A was transduced to KNS42 cells to knock down H3.3G34V protein expression. Cell lines were then compared via ChIP-Seq, Western Blot, proliferation and viability studies. RESULTS We found that the doxycycline-inducible shRNA knockdown of mutant H3F3A encoding the H3.3G34V protein resulted in loss of H3.3G34V enrichment and increased H3K36me3 enrichment throughout the genome. After knockdown, H3.3G34V enrichment was preserved at loci observed to have the greatest H3.3G34V and H3K36me3 enrichment prior to knockdown. Induced expression of mutant H3.3G34V protein in vitro was insufficient to induce genomic H3K36me3 enrichment patterns observed in H3.3G34V mutant glioma cells. We also observed strong co-enrichment of H3.3G34V and wild-type H3.3 protein, as well as greater H3K27me3 enrichment, in cells expressing H3.3G34V. CONCLUSION Our study demonstrates the effects of H3.3G34V mutant protein on genomic H3K36me3, H3K27me3 and H3.3 enrichment patterns in isogenic cell lines.
Read full abstract