As a highly toxic, mobile, and persistent heavy metal, cadmium (Cd) in soils is becoming a crucial environmental problem. Most of classical physical and chemical remediation measures for Cd-contaminated soils possibly cause some dangers to soil structure and characteristics and potential secondary pollution, however, Cd-resistant microbial which can sequestrate Cd by releasing extracellular polymeric substances (EPS) capable of ion exchange, coordination, and adsorption and improve plant growth should be favorable for remediation of Cd-contaminated soils due to being environmentally friendly and cost-effective. Therefore, the plant-microbe combination is becoming a priority option in the remediation of Cd-contaminated soils. Here, we isolated two strains of Cd-resistant bacteria from soils and investigated the ability of the two strains to promote growth of oilseed rape (Brassica juncea L.) and Cd uptake by the plants. Citrobacter farmeri and Cupriavidus gilardii were isolated from soils via culture media containing 30 and 50mg/L Cd, respectively, which could release EPS including proteins, polysaccharide, and DNA. The EPS from C. gilardii was significantly higher than that from C. farmeri, and the proportion of protein in EPS was the highest for two strains. Additionally, two strains secreted indole-3-acetic acid (IAA) and could solubilize phosphorus, and the ability of C. gilardii to secret IAA was significantly higher than that of C. farmeri. The pot experiment indicated that C. farmeri and C. gilardii significantly enhanced oilseed rape biomass (by 81.99% and 76.57%, respectively), C and N contents, Cd accumulation in plants by 229.03% and 264.63%, respectively, and remediation efficiency at 40 days after emergence (flowering stage). However, the difference in promoting plant growth and Cd uptake and phytoremediation efficiency of Cd-contaminated soils between the two strains was not significant. Overall, C. farmeri and C. gilardii isolated from soils might be promising strains in enhancing phytoremediation of Cd-contaminated soils.
Read full abstract