음악 유사도 계산은 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 가장 중요한 부분이다. 본 논문은 최근 제안된 무게중심 모델을 이용한 음악 검색 방법에 대해서 살펴보고, 무게중심 모델의 확률 분포 유사도를 이용하여 음악 검색을 수행하고 성능을 평가하였다. 확률 분포간의 거리는 주어진 두 개의 확률 분포가 특정 기준에서 얼마나 가까운 지를 계산하는 것으로 다이버전스라고 불리기도 한다. 본 논문에서는 무게중심 모델에서 확률 분포 간의 거리 비교 시에 알파 다이버전스를 활용하였다. 알파 다이버전스는 알파 값에 따라 다양한 형태를 가지며, 널리 사용되고 있는 KLD(Kullback-Leibler)와 BD(Bhattacharyya Distance)를 포함한다. 음악 장르와 가수 데이터셋에서 검색 실험을 수행했고, 확률 분포 거리 기반 유사도와 벡터 거리 기반 유사도의 음악 검색 성능을 비교하였다. 알파 다이버전스를 통해서 무게중심 모델 기반 음악 검색 성능을 개선시킬 수 있음을 보였다. Music-similarity computation is crucial in developing music information retrieval systems for browsing and classification. This paper overviews the recently-proposed centroid-model based music retrieval method and applies the distributional similarity measures to the model for retrieval-performance evaluation. Probabilistic distance measures (also called divergence) compute the distance between two probability distributions in a certain sense. In this paper, we consider the alpha divergence in computing distance between two centroid models for music retrieval. The alpha divergence includes the widely-used Kullback-Leibler divergence and Bhattacharyya distance depending on the values of alpha. Experiments were conducted on both genre and singer datasets. We compare the music-retrieval performance of the distributional similarity with that of the vector distances. The experimental results show that the alpha divergence improves the performance of the centroid-model based music retrieval.
Read full abstract