The workflow to simulate motion with recorded data usually starts with selecting a generic musculoskeletal model and scaling it to represent subject-specific characteristics. Simulating muscle dynamics with muscle–tendon parameters computed from existing scaling methods in literature, however, yields some inconsistencies compared to measurable outcomes. For instance, simulating fiber lengths and muscle excitations during walking with linearly scaled parameters does not resemble established patterns in the literature. This study presents a tool that leverages reported in vivo experimental observations to tune muscle–tendon parameters and evaluates their influence in estimating muscle excitations and metabolic costs during walking. From a scaled generic musculoskeletal model, we tuned optimal fiber length, tendon slack length, and tendon stiffness to match reported fiber lengths from ultrasound imaging and muscle passive force–length relationships to match reported in vivo joint moment–angle relationships. With tuned parameters, muscle contracted more isometrically, and soleus’s operating range was better estimated than with linearly scaled parameters. Also, with tuned parameters, on/off timing of nearly all muscles’ excitations in the model agreed with reported electromyographic signals, and metabolic rate trajectories varied significantly throughout the gait cycle compared to linearly scaled parameters. Our tool, freely available online, can customize muscle–tendon parameters easily and be adapted to incorporate more experimental data.
Read full abstract