Abstract

It has been proposed that during walking and running the body has strategies to minimize the soft tissue vibrations. The concept of muscle tuning suggests that muscle activity changes in response to the input signal to modify the frequency and damping of such vibrations. Although it has been demonstrated for continuous vibrations and single impacts, the adaptations dynamics are still unclear. The purpose of this study was to determine (1) if the neuromuscular adaptation to repeated single impacts is immediate, (2) what are the adaptation mechanisms, and (3) if there are functional groups defined by different adaptation strategies. Twenty‐one subjects performed two sets of knee curl on a dynamometer with a custom‐made appliance that supported the foot and heel. The first set was for familiarization with a 90° range of movement and 400°/sec velocity. The second set had 15 repetitions with a 55° range and the same angular velocity. The subjects were not notified of the change; therefore the first impact was unexpected. A pair of electrodes and a three‐dimensional accelerometer were placed on the gastrocnemius medialis. Damping coefficient, natural frequency, and EMG characteristics were measured. All the participants adapted to the vibrations and showed changes in the damping coefficient and or the natural frequency. Apart from the immediate adaptation, a subgroup showed a progressive adaptation after the first immediate change. Three functional groups were identified using support vector machine, correlations with anthropometric values suggest that muscle mass could affect the adaptation strategy used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.