Nanoplastics (NPx) can enter living organisms, including humans, through ecosystems, inhalation, and dermal contact and can be found from the intestine to the brain. However, it is unclear whether NPx accumulates and affects the dopamine system. In this study, we investigated the effects of NPx on the dopamine system in cultured murine cerebral cortex neurons. Cultured cerebrocortical neurons were treated with 100nm NPx at the following concentrations for 24h: 1.896 × 105, 3.791 × 106, 7.583 × 107, 1.571 × 109, 3.033 × 1010, and 3.033 × 1011particles/mL. Dopamine-associated proteins were analyzed using immunofluorescence staining. NPx treatment induced its accumulation in neurons in a dose-dependent manner and increased the levels of dopamine receptors D1 and D2 and their co-expression. However, NPx treatment did not affect the levels of other dopamine receptors, dopamine transporters, tyrosine hydroxylase, and microtubule-associated protein 2, or synaptophysin in neuronal structures. This study demonstrated that NPx is a potential modulator of the dopamine system via its receptors rather than its synthesis and reuptake in neurons and may be associated with dopamine-based psychiatric disorders.
Read full abstract