DNA mixtures are a common sample type in forensic genetics, and we typically assume that contributors to the mixture are unrelated when calculating the likelihood ratio (LR). However, scenarios involving mixtures with related contributors, such as in family murder or incest cases, can also be encountered. Compared to the mixtures with unrelated contributors, the kinship within the mixture would bring additional challenges for the inference of the number of contributors (NOC) and the construction of probabilistic genotyping models. To evaluate the influence of potential kinship on the individual identification of the person of interest (POI), we conducted simulations of two-person (2 P) and three-person (3 P) DNA mixtures containing unrelated or related contributors (parent-child, full-sibling, and uncle-nephew) at different mixing ratios (for 2 P: 1:1, 4:1, 9:1, and 19:1; for 3 P: 1:1:1, 2:1:1, 5:4:1, and 10:5:1), and performed massively parallel sequencing (MPS) using MGIEasy Signature Identification Library Prep Kit on MGI platform. In addition, in silico simulations of mixtures with unrelated and related contributors were also performed. In this study, we evaluated 1): the MPS performance; 2) the influence of multiple genetic markers on determining the presence of related contributors and inferring the NOC within the mixture; 3) the probability distribution of MAC (maximum allele count) and TAC (total allele count) based on in silico mixture profiles; 4) trends in LR values with and without considering kinship in mixtures with related and unrelated contributors; 5) trends in LR values with length- and sequence-based STR genotypes. Results indicated that multiple numbers and types of genetic markers positively influenced kinship and NOC inference in a mixture. The LR values of POI were strongly dependent on the mixing ratio. Non- and correct-kinship hypotheses essentially did not affect the individual identification of the major POI; the correct kinship hypothesis yielded more conservative LR values; the incorrect kinship hypothesis did not necessarily lead to the failure of POI individual identification. However, it is noteworthy that these considerations could lead to uncertain outcomes in the identification of minor contributors. Compared to length-based STR genotyping, using sequence-based STR genotype increases the individual identification power of the POI, concurrently improving the accuracy of mixing ratio inference using EuroForMix. In conclusion, the MGIEasy Signature Identification Library Prep kit demonstrated robust individual identification power, which is a viable MPS panel for forensic DNA mixture interpretations, whether involving unrelated or related contributors.
Read full abstract