We extend ordinary Padé approximation, which is based on a set of standard polynomials as <svg style="vertical-align:-2.30685pt;width:85.125px;" id="M1" height="16.487499" version="1.1" viewBox="0 0 85.125 16.487499" width="85.125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,13.55)"><path id="x7B" d="M293 -169q-145 0 -145 128q0 35 4 106t3 104q0 17 -2 28t-10 25.5t-28 23t-51 10.5v29q31 2 51 10.5t28 23t10 25.5t2 28q0 31 -4 101t-3 104q0 132 145 132v-28q-51 -7 -67.5 -30t-16.5 -63q0 -32 6.5 -99.5t6.5 -100.5q0 -97 -83 -115v-4q83 -20 83 -117
q0 -34 -6.5 -99.5t-6.5 -96.5q0 -41 16.5 -65.5t67.5 -31.5v-28z" /></g><g transform="matrix(.017,-0,0,-.017,5.961,13.55)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,14.12,13.55)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,20.818,13.55)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g><g transform="matrix(.017,-0,0,-.017,30.32,13.55)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,37.035,13.55)"><path id="x2026" d="M160 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5t16 -40.5q0 -26 -16 -42t-41 -16zM485 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5t16 -40.5q0 -26 -16 -42t-41 -16zM806 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5
t16 -40.5q0 -26 -15.5 -42t-41.5 -16z" /></g><g transform="matrix(.017,-0,0,-.017,56.345,13.55)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,63.06,13.55)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,72.575,5.388)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2
q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g> <g transform="matrix(.017,-0,0,-.017,79.175,13.55)"><path id="x7D" d="M283 255q-31 -2 -51 -10.5t-28 -23.5t-10 -27t-2 -30q0 -28 4 -97.5t4 -107.5q0 -128 -146 -128v28q50 7 67.5 31t17.5 63q0 33 -7 100t-7 98q0 96 84 117v4q-84 20 -84 115q0 34 7 102.5t7 98.5q0 40 -17.5 63t-67.5 30v28q28 0 50 -4t45.5 -16.5t37 -40t13.5 -68.5
q0 -37 -4 -106.5t-4 -98.5q0 -18 2 -30t10 -27t28 -23.5t51 -10.5v-29z" /></g> </svg>, to a new extended Padé approximation (Müntz Padé approximation), based on the general basic function set <svg style="vertical-align:-2.30685pt;width:128px;" id="M2" height="19.625" version="1.1" viewBox="0 0 128 19.625" width="128" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.7)"><use xlink:href="#x7B"/></g><g transform="matrix(.017,-0,0,-.017,5.961,16.7)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,14.12,16.7)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,20.818,16.7)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,30.338,8.537)"><path id="x1D706" d="M529 97q-70 -109 -136 -109q-41 0 -56 94q-23 144 -37 284q-38 -88 -99 -202.5t-93 -156.5q-26 -8 -76 -19l-9 21q71 78 145.5 193t124.5 232q-5 84 -15 128q-12 55 -29.5 75.5t-42.5 20.5q-21 0 -45 -13l-8 24q16 17 46 30t55 13q43 0 70 -46.5t40 -169.5
q27 -249 51 -392q7 -46 23 -46q24 0 70 60z" /></g> <g transform="matrix(.017,-0,0,-.017,37.525,16.7)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,44.223,16.7)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,53.738,8.537)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g><g transform="matrix(.012,-0,0,-.012,59.449,8.537)"><use xlink:href="#x1D706"/></g> <g transform="matrix(.017,-0,0,-.017,66.638,16.7)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,73.335,16.7)"><use xlink:href="#x2026"/></g><g transform="matrix(.017,-0,0,-.017,92.663,16.7)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,99.36,16.7)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,108.875,8.537)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,114.848,8.537)"><use xlink:href="#x1D706"/></g> <g transform="matrix(.017,-0,0,-.017,122.038,16.7)"><use xlink:href="#x7D"/></g> </svg>  <svg style="vertical-align:-2.3205pt;width:76.4375px;" id="M3" height="15.1125" version="1.1" viewBox="0 0 76.4375 15.1125" width="76.4375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,5.944,12.162)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g><g transform="matrix(.017,-0,0,-.017,18.812,12.162)"><path id="x3C" d="M512 -3l-437 233v51l437 233v-58l-378 -200v-2l378 -199v-58z" /></g><g transform="matrix(.017,-0,0,-.017,33.516,12.162)"><use xlink:href="#x1D706"/></g><g transform="matrix(.017,-0,0,-.017,47.625,12.162)"><path id="x2264" d="M531 71l-474 214v50l474 215v-56l-416 -184l416 -183v-56zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,62.329,12.162)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,70.488,12.162)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> (the particular case of Müntz polynomials) using general Taylor series (based on fractional calculus) with error convergency. The importance of this extension is that the ordinary Padé approximation is a particular case of our extended Padé approximation. Also the parameterization (<svg style="vertical-align:-0.1638pt;width:9.5124998px;" id="M4" height="12.4375" version="1.1" viewBox="0 0 9.5124998 12.4375" width="9.5124998" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><use xlink:href="#x1D706"/></g> </svg> is the corresponding parameter) of new extended Padé approximation is an important subject which, obtaining the optimal value of this parameter, can be a good question for a new research.