Microbes regulate soil health by negating ecological disturbances, and improve plant productivity in a sustainable manner. Indiscriminate application of pesticides creates a detrimental impact on the rhizospheric microbiota, thereby affecting soil health. Azadirachtin, earlier believed to be an environment-friendly alternative to chemical pesticides, exhibits a non-target impact on microbial communities. This study aimed to employ potent bacteria to promote the growth of mungbean plant (Vigna radiata), and mitigate the non-target impact of azadirachtin. Bacterial strains were isolated by enrichment from mungbean rhizosphere. A plant growth experiment was performed with mungbean, amended with azadirachtin to assess the impact of bacterial bioinoculants on the rhizospheric microbiota. The impact of azadirachtin on rhizospheric bacterial community was analyzed qualitatively and quantitatively by 16S rRNA PCR-DGGE and qPCR of various markers, respectively. Residual concentration of azadirachtin in the soil was estimated by HPLC. The bacterial inoculants used in combination significantly promoted plant growth and enhanced the diversity and abundance of total bacterial community in the presence of azadirachtin. Further, the abundance of specific bacterial groups (α-Proteobacteria, β-Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes) were significantly boosted. Compared to the control, the isolates significantly facilitated the reduction in residual concentration of azadirachtin in the mungbean rhizosphere. Bacterial inoculants can serve a tripartite role in reducing the stress imparted by botanical pesticides, together with promoting plant growth and enriching the rhizospheric bacterial community structure.
Read full abstract