Visual features of separable dimensions conjoin to represent an integrated entity. We investigated how visual features bind to form a complex visual scene. Specifically, we focused on features important for visually guided navigation: direction and distance. Previously, separate works have shown that directions and distances of navigable paths are coded in the occipital place area (OPA). Using functional magnetic resonance imaging (fMRI), we tested how separate features are concurrently represented in the OPA. Participants saw eight types of scenes, in which four of them had one path and the other four had two paths. In single-path scenes, path direction was either to the left or to the right. In double-path scenes, both directions were present. A glass wall was placed in some paths to restrict navigational distance. To test how the OPA represents path directions and distances, we took three approaches. First, the independent-features approach examined whether the OPA codes each direction and distance. Second, the integrated-features approach explored how directions and distances are integrated into path units, as compared to pooled features, using double-path scenes. Finally, the integrated-paths approach asked how separate paths are combined into a scene. Using multi-voxel pattern similarity analysis, we found that the OPA’s representations of single-path scenes were similar to other single-path scenes of either the same direction or the same distance. Representations of double-path scenes were similar to the combination of two constituent single-paths, as a combined unit of direction and distance rather than as a pooled representation of all features. These results show that the OPA combines the two features to form path units, which are then used to build multiple-path scenes. Altogether, these results suggest that visually guided navigation may be supported by the OPA that automatically and efficiently combines multiple features relevant for navigation and represent a navigation file.
Read full abstract