This paper presents a design algorithm of involving robust decoupled control of uncertain multivariable feedback systems. Two-degree-of-freedom system structure is adopted to handle the quantitative robustness and decoupled performance requirements. Quantitative feedback theory is applied for loop compensator design to achieve quantitative robustness. A decoupled model matching approach is employed for prefilter design to achieve input-output decoupling performance. Thus, the design method of two-degree-of-freedom compensators is proposed to achieve decoupled system control with quantitative robust performance. Since internal stability is satisfied, this design method performs appropriately for any stable or unstable, minimum or non-minimum phase system. The AFTI/F-16 flight control system is considered as the design example to illustrate the design algorithm.