Artificial intelligence (AI), especially through the development of deep learning techniques like convolutional neural networks (CNNs), has revolutionized numerous fields. CNNs, introduced by Yann LeCun in the 1990s (Hubbard, W.; Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1 (4), 541- 551. https://doi.org/10.1162/neco.1989.1.4.541), have found applications in healthcare for medical diagnostics, autonomous vehicles in transportation, stock market prediction in finance, and image recognition in computer vision to name just a few. Similarly, in analytical chemistry, deep learning has enhanced data analysis from techniques like MS spectrometry, NMR, fluorescence spectroscopy, and chromatography. Another AI branch, Natural Language Processing (NLP), has surged recently with the advent of Large Language Models (LLMs), such as OpenAI's ChatGPT. This paper demonstrates the application of an LLM via a smartphone to conduct multivariate data analyses, in an interactive conversational manner, of a hyper-spectral imaging data set from laser-induced breakdown spectroscopy (LIBS). We demonstrate the potential of LLMs to process and analyze data sets, which automatically generate and execute code in response to user queries, and anticipate their growing role in the future of analytical chemistry.
Read full abstract