Resource allocation issues are discussed in the context of a virtual multiuser MIMO uplink assuming users equipped with a single antenna. A scheduling algorithm, which efficiently mitigates the co-channel interference (CCI) arising from the spatial correlation of users sharing common resources, is proposed. Users are selected using an incremental approach with a reduced complexity that is due to the elimination of over-correlated users at each iteration. The user selection criterion is based on an adaptive, utility-based scheduling metric designed for the purpose. Its main advantage lies in the periodic adaptation of priority weights according to the application characteristics described with its utility curves and according to momentary quality of service (QoS) parameters. The results show a better performance in aggregate system utility than the existing utility based scheduling metrics such as proportionally fair scheduling (PFS), largest weighted delay first (LWDF), modified LWDF (M-LWDF), and exponential algorithm.
Read full abstract