In the development of data-driven soft sensors for product quality assessment in multi-unit manufacturing processes, the only information that is typically used as an input to the model is real-time measurements from field sensors. However, even if detailed knowledge of the mechanistic behavior of the process may not be available, information about the sequence of processing units, and their connectivity, is available, typically in graphical form through process flow diagrams. In this study, we investigate the use of sequential-orthogonalized partial least-squares (SO-PLS) regression as a way to capture connectivity information from a process flow diagram, and transfer it into a data-driven model to be used as a soft sensor in a multi-unit process. Connectivity between units is captured and translated into a block order that establishes a sequence for block regressions. Orthogonalization between two blocks is then carried out with the aim of eliminating overlapping data and retaining information that is unique to each block. Product quality is finally predicted by summing the contributions from each block, and the accuracy of prediction is enhanced due to the embedded dual feature-extraction procedure, which combines orthogonalization and latent-variable extraction. The effectiveness of the proposed approach is illustrated by comparing the quality prediction performance of two soft sensors for a simulated multi-unit continuous process: one using standard PLS and one using SO-PLS. Superior performance of the SO-PLS soft sensor is achieved, even more markedly so when fewer field measurements are available to build the soft sensor.
Read full abstract