Abstract

The wastewater discharged from crude oil storage tanks (WCOST) contains high concentrations of salt and metal iron ions, and high chemical oxygen demand (COD). It belongs to "3-high" wastewater, which is difficult for purification. In this study, WCOST treatments were comparatively investigated via an advanced pretreatment and the traditional coagulation-microfiltration (CMF) processes. After WCOST was purified through the conventional CMF process, fouling occurred in the microfiltration (MF) membrane, which is rather harmful to the following reverse osmosis (RO) membrane unit, and the effluent featured high COD and UV254 values. The analysis confirmed that the MF fouling was due to the oxidation of ferrous ions, and the high COD and UV254 values were mainly attributable to the organic compounds with small molecular sizes, including aromatic-like and fulvic-like compounds. After the pretreatment of the advanced process consisting of aeration, manganese sand filtration, and activated carbon adsorption in combination with CMF process, the removal efficiencies of organic matter and total iron ions reached 97.3% and 99.8%, respectively. All the water indexes of the effluent, after treatment by the advanced multi-unit process, meet well the corresponding standard. The advanced pretreatment process reported herein displayed a great potential for alleviating the MF membrane fouling and enhanced the lifetime of the RO membrane system in the 3-high WCOST treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.