SynopsisWe consider quasilinear systems of 2N partial differential equations with 2N unknown functions depending on n + 1 variables as evolution systems on the space L2(Rn, RN) × L2(Rns, RN) endowed with a symplectic form induced by the standard scalar product on L2(Rn, RN). The necessary and sufficient conditions for such a system to be a Hamiltonian system are derived. The main purpose of this paper is to propose a straightforward link between the symplectic approach formulated by Chernoff, Hughes and Marsden and the multisymplectic formulations of evolution systems created by Kijowski and developed by Gawedzki and Kondracki. A general method of constructing the multisymplectic form and the Hamiltonian form for these systems is given.