Oil flow in inter-salt shale oil reservoirs is different from that of other oil fields due to its high salt content. Dissolution and diffusion occur when the salt minerals meet the water-based working fluid, resulting in drastic changes in the shale’s permeability. In addition, ignoring the stress-sensitive effect will cause significant errors in naturally fractured reservoirs for a large number of the natural fractures developed in shales. This study presents a transient pressure behavior model for a multi-stage fractured horizontal well (MFHW) in inter-salt shale oil reservoirs, considering the dissolution of salt and the stress sensitivity mentioned above. The analytical solution of our model was obtained by applying the methods of Pedrosa’s linearization, the perturbation technique and Laplace transformation. The transient pressure of a multi-stage fractured horizontal well in an inter-salt shale oil reservoir was obtained in real space by using the method of Stehfest’s numerical inversion. The bi-logarithmic-type curves thus obtained reflected the characteristics of the transient pressure behavior of a MFHW for the inter-salt shale oil reservoirs, and eight flow periods were recognized in the type curves. The effects of salt dissolution, stress sensitivity, the storativity ratio and other parameters on the type curves were analyzed thoroughly, which is of great significance for understanding the transient flow behavior of inter-salt shale oil reservoirs.
Read full abstract