The population of low vision people increases continuously with the acceleration of aging society. As reported by WHO, most of this population is over the age of 50 years and 81% were not concerned by any visual problem before. A visual deficiency can dramatically affect the quality of life and challenge the preservation of a safe independent existence. This study presents a LED-based lighting approach to assist people facing an age-related visual impairment. The research procedure is based on psychophysical experiments consisting in the ordering of standard color samples. Volunteers wearing low vision simulation goggles performed such an ordering under different illumination conditions produced by a 24-channel multispectral lighting system. A filtering technique using color rendering indices coupled with color measurements allowed to objectively determine the lighting conditions providing the best scores in terms of color discrimination. Experimental results were used to combine 3 channels to produce white light inducing a stronger color perception in a low vision context than white LEDs nowadays available for general lighting. Even if further studies will be required, these first results give hope for the design of smart lighting devices that adapt to the visual needs of the visually impaired.