Multi-sensor image can provide supplementary information, usually leading to better performance in classification tasks. However, the general deep neural network-based multi-sensor classification method learns each sensor image separately, followed by a stacked concentrate for feature fusion. This way requires a large time cost for network training, and insufficient feature fusion may cause. Considering efficient multi-sensor feature extraction and fusion with a lightweight network, this paper proposes an attention-guided classification method (AGCNet), especially for multispectral (MS) and panchromatic (PAN) image classification. In the proposed method, a share-split network (SSNet) including a shared branch and multiple split branches performs feature extraction for each sensor image, where the shared branch learns basis features of MS and PAN images with fewer learn-able parameters, and the split branch extracts the privileged features of each sensor image via multiple task-specific attention units. Furthermore, a selective classification network (SCNet) with a selective kernel unit is used for adaptive feature fusion. The proposed AGCNet can be trained by an end-to-end fashion without manual intervention. The experimental results are reported on four MS and PAN datasets, and compared with state-of-the-art methods. The classification maps and accuracies show the superiority of the proposed AGCNet model.
Read full abstract