Quantum teleportation is the process of transferring quantum information using classical communication and pre-shared entanglement. This process can benefit from the use of catalysts, which are ancillary entangled states that can enhance teleportation without being consumed. While chemical catalysts undergoing deactivation invariably exhibit inferior performance compared to those unaffected by deactivation, quantum catalysts, termed embezzling catalysts, that are subject to deactivation, may outperform their non-deactivating counterparts. In this work, we present teleportation protocols with embezzling catalysts that can achieve arbitrarily high fidelity. This enables the teleported state to closely approximate the original message state with arbitrary precision, while maintaining arbitrarily small variations in the catalytic system through the use of finite-dimensional embezzling catalysts. We show that some embezzling catalysts are universal, meaning that they can improve the teleportation fidelity for any pre-shared entanglement. We also explore methods to reduce the dimension of catalysts without increasing catalyst consumption, an essential step towards realizing quantum catalysis in practice.
Read full abstract