Abstract

AbstractWe present a sheaf-theoretic construction of shape space—the space of all shapes. We do this by describing a homotopy sheaf on the poset category of constructible sets, where each set is mapped to its Persistent Homology Transforms (PHT). Recent results that build on fundamental work of Schapira have shown that this transform is injective, thus making the PHT a good summary object for each shape. Our homotopy sheaf result allows us to “glue” PHTs of different shapes together to build up the PHT of a larger shape. In the case where our shape is a polyhedron we prove a generalized nerve lemma for the PHT. Finally, by re-examining the sampling result of Smale-Niyogi-Weinberger, we show that we can reliably approximate the PHT of a manifold by a polyhedron up to arbitrary precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.