The method for constructing a feedback matrix to solve the problem spectrum allocation (spectrum control, pole assignment) for linear dynamic system is given. A new proof of the well-known theorem about the connection between the complete controllability of a dynamic system with existence of the feedback matrix is formed in the process of construction by the cascade decomposition method. The entire set of arbitrary elements that influence the non-uniqueness of the matrix is identified. Examples of constructing a feedback matrix in the case of a real spectrum and in the presence of complex conjugate eigenvalues, as well as for the case of multiple eigenvalues, are given. The stability of the specified spectrum under small perturbations of the system parameters with a fixed feedback matrix is studied.
Read full abstract