Gene expression and phenotype association can be affected by potential unmeasured confounders from multiple sources, leading to biased estimates of the associations. Since genetic variants largely explain gene expression variations, they can be used as instruments in studying the association between gene expressions and phenotype in the framework of high dimensional instrumental variable (IV) regression. However, because the dimensions of both genetic variants and gene expressions are often larger than the sample size, statistical inferences such as hypothesis testing for such high dimensional IV models are not trivial and have not been investigated in literature. The problem is more challenging since the instrumental variables (e.g., genetic variants) have to be selected among a large set of genetic variants. This paper considers the problem of hypothesis testing for sparse IV regression models and presents methods for testing single regression coefficient and multiple testing of multiple coefficients, where the test statistic for each single coefficient is constructed based on an inverse regression. A multiple testing procedure is developed for selecting variables and is shown to control the false discovery rate. Simulations are conducted to evaluate the performance of our proposed methods. These methods are illustrated by an analysis of a yeast dataset in order to identify genes that are associated with growth in the presence of hydrogen peroxide.
Read full abstract