The introduction of an energy storage system plays a vital role in the integration of renewable energy by keeping a stable operation and enhancing the flexibility of the power flow system, especially for an islanding microgrid which is not tied to a grid and for a self-contained microgrid which tries to stay independent from a grid as much as possible. To accommodate the effects of power fluctuations of distributed energy resources and power loads on power systems, a power flow assignment under power balance constraint is essential. However, due to power limitations of power devices, the capacity of storage devices, and power flow connections, the power balance may not be achieved. In this paper, we proposed a system characterization which describes the relation among power generators, power loads, power storage devices, and connections that must be satisfied for a system to operate by keeping SOC limitations of power storage devices. When we consider one power generator, one power load, and one power storage device connected at a single node, the generated energy by the generator minus the consumed energy by the load from some start time will increase/decrease the state of charge (SOC) for the storage device; hence, keeping SOC max/min limitations relies on whether the difference between the generated energy and the consumed energy stays within a certain range or not, which can be computed from the capacity Ess and other parameters. Our contribution in this paper is an extension and generalization of this observation to a system that consists of multiple fluctuating power generators, multiple fluctuating power loads, multiple storage devices, and connections that may not be a full connection between all devices. By carefully enumerating the connection-dependent flow paths of generated energy along the flow direction from generators to storages and loads, and enumerating the connection-dependent flow paths of consumed energy along the counter-flow direction from loads to storages and generators, we have formulated the increase/decrease of SOCs of storage devices caused by the imbalance between generated energy and consumed energy. Finally, considering the max/min limitations of SOCs and fluctuations of power generators and power loads, the conditions that the power generators and the power loads must have for SOCs of storage devices to maintain individual max/min limitations have been derived. The system characterization provides guidelines for a power flow system that can continue safe operation in the presence of power fluctuations. That is, in order for a system to have a feasible power flow assignment, there are the issues of how large the capacity of a power storage device should be, how large/small the maximum/minimum power/demand levels of the power generators and the power loads should be, and how the connection should be configured. Several examples using our system characterization are demonstrated to show the possible applications of our results.