Lanthanide materials with a 4f7 electron configuration (8S7/2) offer an exciting system for realizing multiple addressable spin states for qubit design. While the 8S7/2 ground state of 4f7 free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu2+ attractive as it mirrors Gd3+ in exhibiting the 8S7/2 ground state, capable of seven spin-allowed transitions. In this work, we identify Eu2(P2S6) and Eu2(P2Se6) as viable candidates for optically addressable spin states. The materials feature paramagnetic behavior at 2.0 ≤ T ≤ 400 K and μ0 H = 0.01 and 7 T. The field-dependent magnetization M(H) curve reveals a single-ion spin with effective magnetic moments comparable to the expected magnetic moment of Eu2+. Seven well-defined narrow peaks in the excitation and emission spectra of Eu2+ are resolved. Phonon contributions to the Eu2+ spin environment are evaluated through heat capacity measurements. Insights into how the spin-polarized band structure and density of states of the materials influence the physical properties are described by using density functional theory calculations. These results present a foundational study of Eu2(P2S6) and Eu2(P2Se6) as a feasible platform for harnessing the spin, charge, orbital, and lattice degrees of freedom of Eu2+ for qubit design.
Read full abstract